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COMMENT

Comment on energy level statistics in the mixed regime
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Abstract. We comment on the recent paper by Abul-Magd (1996J. Phys. A: Math. Gen.29 1)
concerning the energy level statistics in the mixed regime, i.e. such having the mixed classical
dynamics where regular and chaotic regions coexist in the phase space. We point out that
his basic assumption on the additive property of the level-repulsion functionr(S) (conditional
probability density) in the sense of dividing it linearly into the regular and chaotic part in
proportion to the classical fractional phase space volumesρ1 andρ2 = q is not justified, since
among other things, it relies on the type of Berry’s ergodic assumption, which, however, is
only correct in a homogeneous ensemble of ergodic systems, not in the neighbourhood of an
integrable system. Thus, his resulting distribution cannot be regarded as a theoretically well-
founded object. We point out that the semiclassical limiting energy level spacing distribution
must be of Berry–Robnik (1984) type, and explain what transitional behaviour of the Brody-type
(with fractional power-law energy level repulsion) we observe in the near semiclassical regime
where effective ¯h is not yet small enough. Thus we refer to the derivation, arguments and
conclusions in our previous paper (Prosen and Robnik 1994J. Phys. A: Math. Gen.26 8059),
and explain again the behaviour in this double transition region.

Abul-Magd (1996) recently offered a new theoretical energy level spacing distribution for
quantal Hamiltonian systems whose classical dynamics is of the mixed type, i.e. such having
regular regions of invariant tori coexisting in the phase space (and on the energy surface)
with chaotic regions, a typical KAM scenario. In this comment we wish to point out that
his result is not theoretically well founded and is in fact erroneous, and has no other merit
than mathematical simplicity, which, however, is of course not a sufficient condition for the
scientific merit. Abul-Magd used the famous Wigner surmise (Wigner 1956, Brody 1973,
Brody et al 1981, Robnik 1984, Bohigas and Giannoni 1984), which by itself is a sound
argument, but Abul-Magd made an assumption about the conditional probability density
r(S) (the so-called level repulsion function), in conjunction with the Berry-type argument
on the ergodicity of quantal energy spectra in an ensemble of classically ergodic systems
(Berry 1981, 1983, 1985), which is wrong in his context, because it is applied to the systems
that arenot ergodic but close to an integrable system (KAM-type systems).

Quite generally, by knowingr(S) one gets the level spacing distributionP(S) at once
asP(S) = r(S) exp(− ∫ S0 r(x) dx). For example,r(S) = 1 implies Poisson distribution,
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r(S) = πS/2 implies Wigner (two-dimensional GOE),r(S) ∝ Sβ implies Brody distribution
etc.

In order to deriver(S) Abul-Magd referred to the ergodicity argument by Berry (1981,
1983, 1985) where in calculating theP(S) at small S he (Berry) replaced the average
over the energy spectrum by the average over an ensemble ofclassically ergodicsystems
parametrized by at least two parameters (because the degeneracies, the diabolical points,
have codimension 2), which is a very reasonable assumption indeed, and it immediately
yields the linear level repulsion. However, as it has been pointed out by one of us (Robnik
1984) this ergodicity assumption cannot be applied in the neighbourhood of an integrable
system, simply because there is no local uniformity in the parameter space, and as we
approach (the coordinates/parameters of) the integrable system we see greater and greater
density of degeneracy points: they are not uniformly distributed in the space{parameterAx
parameterBx energy}.

Therefore, the ansatz (‘the basic assumption’) of Abul-Magd forr(S) = ρ1+ρ2S, where
ρ1 + ρ2 = 1 (in his notationq ≡ ρ1), is not justified theoretically, but is just a guess. In
fact it leads to a distribution function which is mathematically simple, normalized, but not
its first moment, which is another deficiency of the model.

Further, we claim with full theoretical justification that the correct ultimate semiclassical
energy level spacing distribution is in fact of Berry and Robnik (1984). (Similar thinking
can be of course applied to other statistical measures, such as number variance and delta
statistics, etc, see e.g. Seligman and Verbaarschot (1985).) This assertion has a sound
theoretical foundation. It is based on the picture in the quantum phase space (the Wigner
functions of stationary eigenstates) in the strict semiclassical limit, ¯h→ 0, where we observe
the condensation of states in volume elements of order(2πh̄)f , wheref is the number of
degrees of freedom (see e.g. Robnik 1988, 1997), on classical invariant objects, which is the
contents of the so-called principle of uniform semiclassical condensation. The prediction
agrees with the rigorous results by Lazutkin (1981, 1991) on splitting the energy spectra
and the eigenstates in regular and irregular levels/states (qualitatively predicted by Percival
(1973)), in the special case of convex billiards with smooth boundaries. This has also been
analysed in Li and Robnik (1995). We have at least two special but typical mixed dynamical
systems for which we have demonstrated with a very great accuracy that the semiclassically
limiting statistics is Berry–Robnik.

We show the results in figures 1(a)–(d), for two different representations of the level
spacing distributionP(S). Namely, we show the diagrams of cumulative level spacing
distribution W(S) = ∫ S

0 P(x) dx, and the so-calledU -function, defined byU(W) =
2
π

arccos
√

1−W (Prosen and Robnik 1993). In figures 1(a) and (b) we show the results
for the quantized compactified standard map exactly as published in Prosen and Robnik
(1994a, b), but now we also include the best-fitting Abul-Magd curves. The system is a little
bit abstract but it allows us to achieve the deepest possible semiclassical regime with strongly
significant statistics. In figures 1(c) and (d) we show the results for a generic physical
autonomous two-dimensional Hamiltonian system, namely the semiseparable harmonic
oscillator exactly as in Prosen (1995, 1996), but now we also include the best fitting Abul-
Magd curves. In both cases the Berry–Robnik best-fitting curve is statistically significant,
in contradistinction to the Abul-Magd best-fitting curves. The quantitatively derived Berry–
Robnikρ1 agrees with the classical one within 1–3%, whilst the Abul-Magd parameterq is in
fact almost twice as large as the classicalρ1, which is anothera posteriori reason to reject his
derivation and interpretation. It is interesting to note that in analysing the numerical spectra
we had to use the infinitely dimensional GOE statistics on chaotic component (Wigner
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Figure 1. (a), (c) show the results forW(S) and (b)–(d) show the so-calledU -function
U(W)− U(WBR). HereWBR refers to the best fitting Berry–Robnik level spacing distribution,
so that abscissa in the diagrams (b), (d) is the ideal agreement with Berry–Robnik statistics. The
results for the quantized compactified standard map are in (a), (b) and for the two-dimensional
semiseparable autonomous Hamiltonian harmonic oscillator in (c), (d). The full heavy curve is
data, the full light curve is the best-fitting Berry–Robnik, the broken curve is best-fitting Brody
and the chain curve is the best-fitting Abul-Magd. Abul-Magd is the upper curve and Brody is
the lower one. It is clearly seen for bigS in theW -plots that the disagreement with Abul-Magd’s
prediction is very bad on this global scale, and this disagreement turns out to be indeed very
big in theU -function plots, except perhaps at smallS. For the reference we plot here also
the±σ bands (grey) of expected statistical standard deviation. For the sake of completeness
we quote the best fitting parameter values: In (a), (b) we have the classicalρ1 = 0.265, the
quantal Berry–Robnikρ1 = 0.273 and the quantal Abul-Magdq = 0.448. In (c), (d) we have
the classicalρ1 = 0.291, the quantal Berry–Robnikρ1 = 0.286 and the quantal Abul-Magd
q = 0.466. In (a), (b) we have 160 000 numerical quasi-energy levels for quantum maps with
dimensions 15 982–16 000, with the same kick parametera = 1.8 and the same classical limit.
In (c), (d) we have a stretch of 13 445 energy levels starting from around 17 684 000th level. In
plots (a) and (c) we show for comparison also the GOE and Poissonian curves (dotted), and in
the inset the magnification of the situation at small spacingsS. In (a) the differences between
the data and theory (Berry–Robnik) are not visible, whilst in (c) they can be seen, especially in
the inset, whilst in both (b) and (d) the (quite small) differences between the data and theory
(Berry–Robnik) are made visible.
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Figure 1. (Continued)

distribution= two-dimensional GOE was not good enough) in order to achieve perfect
agreement between the numerical results and the best fitting Berry–Robnik distribution.

Therefore we have full confidence in the correctness of the asymptotic far semiclassical
limit (h̄→ 0) of spectral statistics.

However, before reaching the ultimate semiclassical limit, in a regime which we call
the near semiclassical limit, we find phenomenologically significant and to some extent
universal statistical behaviour of energy spectra, especially in two-dimensional billiards and
elsewhere (Prosen and Robnik 1993, 1994a, b). Namely, we typically observe the fractional
power law level repulsion,P(S) ∝ Sβ , where the exponentβ can be anything between
0 and 1 for OE statistics, orβ ∈ [0, 2] in case of UE (broken antiunitary symmetries, or
more generally, complex representations (see Robnik 1986, Leyvrazet al 1996, Keating
and Robbins 1997, Dobnikar 1996, Robnik and Dobnikar 1997)). It is now qualitatively
understood that this statistics is another manifestation of quantum (dynamical) localization,
i.e. the localization of quantum eigenstates related to the classical dynamics. In KAM
systems we have a theory onβ, where we derive (Prosen and Robnik 1994b) the scaling
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law β = constant ¯h, for sufficiently smallh̄. Furthermore, we have shown that the fractional
power-law regime with the givenβ should be observed for spacingsS within the interval
[exp(−1/β), 1]. Using the above scaling estimates, we see that the fractional power-law
level repulsion isnot observed in the exponentially small interval [0, exp(−constant/h̄)]. So,
when theeffectivePlanck constant goes to zero, ¯h→ 0, this interval becomes exponentially
small and practically invisible, because there are usually not enough objects there. The
estimate agrees perfectly well with the prediction by Berry and Robnik (1984) that there is
such an exponentially small region at smallS due to the tunnelling phenomena. Therefore,
the picture is now fully consistent, and it remains to explain what behaviour we predict
theoretically in this exponentially small region.

We know from elementary thinking that in this region theP(S) must behave linearly
P(S) ∝ S, which cannot be predicted semiclassically (Robnik 1986, Berry 1991, Robnik
and Salasnich 1997) but only quantally (Robnik 1987). The reason is that for very small
spacings the quantum degenerate two-dimensional perturbation theory must be ultimately
sufficient, which was demonstrated and argued in Robnik (1987). Indeed, if one increases
the dimensionality of such a model (‘Poissson+ GOE’), one finds the same linear level
repulsion law for three and four dimensions (Izrailev 1993) and for higher dimensions
(Prosen 1993). This quantum-mechanical picture explains the linear level repulsion region,
which is exponentially small.

The question then is to explain how—in this doubly transitional regime: mixed
dynamics, and transition from near to far semiclassics—the Brody-like behaviour goes over
into Berry–Robnik behaviour, as the ¯h tends to 0. For this we have no global quantitative
theory, except for the more or less local features described above. Schematically we show
this in figure 2. We also show in figure 3, schematically, the Brody-like distribution and the
Berry–Robnik distribution, with the indicated (and schematically exaggerated) exponentially
small region of linear level repulsion (the purely quantum regime). In practice, with actual
spectra, it is almost impossible to detect the exponentially small region, and indeed this has
not been observed until now in any specific system.

The existence of the fractional power-law level repulsion and Brody-like behaviour is
definitely connected with the existence of (dynamical) localization, which is a topic of
current research. Moreover, in ergodic systems, but with very slow diffusion, we also
observe dynamical localization (Prosen and Robnik 1994b, Borgonoviet al 1996, Frahm
and Shepelyanski 1997, Casati and Prosen 1997, Robniket al 1997), which gives rise to

Figure 2. We show the schematic diagram of the doubly transition region: from integrable to
ergodic classical dynamics and from near semiclassics (not very small ¯h) to far semiclassics
(sufficiently smallh̄).
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Figure 3. We show schematically two examples of the Brody-like level spacing distribution
(with higher maximum) and Berry–Robnik type, but in both cases indicated the exponentially
small (but here exaggerated) regime of linear level repulsion (see text).

the Brody-like behaviour, with fractional power-law level repulsion, but here the picture is
much more complicated, andβ must tend to 1, rather than 0, as ¯h→ 0.

Finally, in regard of phenomenological formulae, we suggest that the so-called Berry–
Robnik–Brody (BRB) distribution (see Prosen and Robnik 1994b), which is a two-parameter
distribution function, is the best, because it has the theoretical foundation in the sense that
it takes into account the division of the classical phase space (parameterρ1), and the
localization of the chaotic states on the (subset of the) chaotic regions (whose measure is
ρ2 = 1−ρ1), captured by the level repulsion parameterβ. Indeed, in our own work (Prosen
and Robnik 1994b) we have confirmed the agreement in billiard systems and in mappings,
and a similar success is reported in the context of theoretical nuclear spectra by Lopacet al
(1996).

In conclusion, we propose that there is no place for other limiting semiclassical energy
level statistics than Berry–Robnik (1984), in systems with mixed classical dynamics (KAM-
type systems), while in the transition regime there is evidence and substantial understanding
that outside the exponentially small region of linear level repulsion due to tunnelling,
there is the fractional power-law level repulsion and Brody-like behaviour with exponent
β = constant ¯h, which goes to zero when ¯h goes to zero, thereby going over to the Berry–
Robnik distribution. We have explained why the basic assumption of Abul-Magd (1996) is
not justified and therefore any significant agreement of his results with high-quality spectral
data cannot be expected. Indeed, this has been clearly demonstrated in figures 1(a)–(d).
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